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Statistical hydromechanics of disperse systems 
Part 1. Physical background and general equations 
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On the basis of a statistical treatment of the local structure of a flowing mono- 
disperse system of particles suspended in a viscous fluid, a complete set of 
equations is proposed which governs the mechanical behavionr of both phases 
looked upon as interpenetrating co-existent continua. The set includes the 
dynamic equations of mass and momentum conservation of both phases in their 
mean flow and the kinetic equation for suspended particles. A technique is 
developed for the calculation of various quantities describing random local 
motion of the particles and fluid superimposed on their mean flow. 

1. Introduction 
The motion of various fluid-particle mixtures and transport processes in them 

are of great interest for many up-to-date applications. Nevertheless, the con- 
sistent theory of such mixtures is a t  present not available despite an enormous 
number of derivatives of equations for their mean flow. Mostly phenomeno- 
logical attempts to draw up equations, governing the macroscopic behaviour of 
disperse systems are known so far (see, for example, Anderson & Jackson 1967, 
Lype 1965, Murray 1965 and So0 1967). One common limitation is inherent in 
most of these endeavours, namely, various terms are introduced into equations 
empirically on the basis of more or less plausible qualitative hypotheses so that 
the quantities involved (such as effective viscosities, etc.) are substantially 
‘things in themselves’. This deficiency, which proves to be unessential only in 
the case of very dilute mixtures, is perhaps symptomatic of a lack of physical 
clarity about the properties of a suspension of particles in fluid. 

The main difficulty in the construction of a theory of disperse systems is 
connected with the fact that in their flows the particles and the fluid are in 
random motion. This motion (it is referred to below as ‘pseudo-turbulence’) has 
in many cases a decisive influence upon both rheological properties and transport 
processes in disperse systems and hence affects their mean flow. For instance, it is 
this influence that causes the striking increase in the transport coefficients in a 
fluidized bed as compared with those in a homogeneous fluid. On account of the 
random character of pseudo-turbulence it is obvious that the theory needed 
must inevitably be statistical. The necessity for a rigorous statistical treatment 
of disperse systems has been demonstrated from a somewhat different point of 
view by Panton (1968) and Tam (1969). 
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The particles suspended in a viscous fluid represent a complex non-conservative 
system possessing properties both of a dense gas with potential intermolecular 
interaction and of a system of interacting Brownian particles in a dissipative 
medium. The main obstacles to analysis of the system of suspended particles are 
due just to  this fact, There are several papers concerned with the statistical 
theory of such a system whose authors usually lay emphasis upon one of the two 
mentioned analogies, clearly at the expense of the other. For example, in 
Houghton’s paper (1966) major attention had been paid to  Brownian features of 
particles and to  their interaction with a fluid. On the other hand, Buyevich 
(1966), Levich & Myasnikov (1966) and Myasnikov (1967) had in fact suggested 
that interparticle interactions were brought about by means of direct collisions 
as is the case for a dense gas. 

Both methods are obviously insufficient for adequate treatment of the problem 
and the analogies themselves are rather conventional. First, in contrast to gas 
molecules, the suspended particles interact not only by means of direct collisions 
but also through the random fields of the fluid velocity and pressure. Moreover, 
one might argue about the role of direct collisions altogether. Second, the time 
scale of the random fluctuation force acting upon some particle coincides with the 
characteristic time of substantial change in its velocity. Hence i t  easily follows 
that properties of suspended particles must differ considerably from those of the 
Brownian particles. The facts mentioned have stimulated further attempts by the 
author to construct the improved version of the comprehensive statistical hydro- 
mechanics of disperse systems (some references can be found in the papers by 
Buyevich (1970a, b ) ) .  This paper deals with the formulation of the final version 
resulting from the investigations mentioned. 

The primary aim of the paper is two-fold. First, it is necessary to develop a 
statistical theory which should give an  opportunity to  estimate the quantities 
characterizing random local motion of both phases, pressure and concentration 
fluctuations, etc. on the microscopic level. Second, equations governing the 
macroscopic mean flow of both phases looked upon as interpenetrating inter- 
acting continua have to  be rigorously derived with allowance for the influence of 
pseudo-turbulence upon this flow. I n  order to  make the treatment more apparent 
and to leave all the main ideas unencumbered with details, we shall consider 
below only a monodisperse system whose particles are in a state of thermo- 
dynamic equilibrium so that there is no need to  take mass and energy exchanges 
at the interphase boundary into account. Additionally, we shall assume the 
concept of ‘randomness ’ of pseudo-turbulent motion and shall apply, therefore, 
the methods used in statistical mechanics. Otherwise one is compelled to consider 
the complicated many-body problem with small chance of succeeding. We hope 
that, in spite of a certain complexity of the theory proposed, it gives not only a 
new interpretation of the physical origin of various properties of two-phase flows, 
but also a constructive technique for their direct calculation, and will help to  
provide a more sound foundation for equa.tions of two-phase hydromechanics 
than that of previous work. 
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2. Physical discussion and the kinetic equation for suspended particles 
We consider the system of uniform particles of equivalent radius a and density 

d, suspended in a fluid whose density and viscosity are do and po respectively. The 
situation in the vicinity of each particle is characterized here by the particle 
velocity w, the local volume concentration p, and by the values of the fluid 
velocity v, and pressure p ,  averaged over the particle associated volume u - uo 
occupied by the fluid, i.e. 

1 
v(t ,r)  = - vo(t, r') (1 - t(r - r')) dr', 

1 
P V ,  r) = - po(t, r') (1  - t(r - r')) dr', 

(+ = vo/(p), uo = (+)na3. 

Here the function t(r) equals unity inside a particle and zero outside it, v is the 
mean specific volume of one particle in the system, r the radius-vector of the 
particle centre, vo(r) and pO(r )  the true fluid velocity and pressure and ( p )  the 
mean volume concentration of particles in the system. The latter quantity can be, 
of course, determined by means of the ensemble averaging or through the use 
of the formula 

1 
( P )  = t(r--r')clr', 

V 

where integration is performed over some representative volume V which contains 
a great amount of particles sufficient for the averaging ( V > v) but whose linear 
size is small as compared with the space scale of the field ( p ) .  The explicit 
definition of the quantity p is not so straightforward as that of the quantities 
v and p .  The complete theory of the random concentration of disperse systems 
and of its fluctuations has been given by Buyevich (1970b) who used for this 
purpose some methods of statistical physics and of correlation theory of stationary 
random processes. The details of the calculation are irrelevant here, and it is 
sufficient to say that the quantity p can be regarded as the ratio of the volume uo 
to the instantaneous specific volume of the given test particle, the latter being 
defined in just the same way as in statistical physics of fluids and dense gases. In 
accordance with this theory, the volume u is the smallest physical volume of the 
system under study which can be in principle considered within the limits of any 
continuum model of disperse systems. It is worth noting that one could readily 
obtain the generalized definitions (2.1) to introduce v, p as the continuous func- 
tions of co-ordinates, if one uses in (2.1) the volumes CT whose centres do not 
necessarily coincide with those of particles. Note also that these definitions 
become rather meaningless in the case of a very dilute system when the continuum 
point of view has no advantage at  all and it is reasonable to investigate the motion 
of discrete particles in a fluid. Really, the volume u is large in this case so that the 
accuracy of the continuum description of a dilute system is low. 

It is a virtually impossible task to assign a definite position and definite values 
of p, v, p for each particle and to analyze their changes in a direct manner. 
Therefore, we have to stand on the statistical point of view and regard all these 
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quantities as random. Let us introduce the distribution function f (w; t ,  r) 
normalized to the mean number concentration of particles, n(t, r). Similarly, the 
conventional distributions for the quantities p, v, p associated with some particle 
can be introduced, the corresponding value of w being fixed. This enables us to  
write the equalities 

w = (w)+w’, p = (p)+p’, v = (v)+v‘, p = ( p ) s p ’ ,  (2.2) 

where the bracket quantities are obtained by averaging over the distributions 
mentioned and the primed quantities describe the random pseudo-turbulent 
fluctuations, their mean values being equal to  zero. As in other known systems of 
many particles, i t  is just the former quantities that  appear in the description of 
the phases as co-existent continua (in a sense, this situation is similar, for example, 
to  that in kinetic theory of gases). These quantities are referred to  below as 
‘dynamic variables ’. On the other hand, the primed ‘ pseudo-turbulent variables ’ 
in (2.2) can be treated henceforth as random functions of time and co-ordinates. 

The pseudo-turbulent variables define the random motion of both phases of the 
disperse system under study superimposed upon their mean flow. It may be 
useful to discuss briefly those physical causes that lead to the generation of this 
motion. To this end, we consider some volume of the two-phase mixture in the 
local convective co-ordinate system connected with the mean flow of the particles 
located in this volume. The origin of this system moves along the laboratory 
co-ordinate system with the velocity (w>, this quantity being assumed uniform 
over the volume. It is obvious that the mean total force acting upon the particles 
in the given volume equals zero in the co-ordinate system introduced. This force 
includes in a general case the force due to  the external field and the force of 
interaction of the particles with the fluid, the latter force being a non-linear 
function of the local concentration. Therefore, the concentration fluctuations 
result in violation of the mean force balance so that fluctuating forces arise which 
accelerate or decelerate individual particles. The energy of the mean flow of the 
mixture is transferred in this manner t o  the random motion of individual 
particles or even of groups of particles. The interparticle interaction brings about 
a further exchange of energy of these pulsations between all the particles whereas 
the interphase interaction gives rise to  corresponding fluctuations of the fluid 
velocity and pressure. These interactions add new ‘randomness ’ to the pulsating 
motion which already is random from the beginning. The energy of this motion 
is dissipated in the long run by viscous forces but new fluctuations arise a t  the 
same t,ime so that one can observe a certain balance between the energy trans- 
ferred to pseudo-turbulence from the mean flow and the pseudo-turbulent energy 
dissipated. The existence of random motion of particles and a fluid in two-phase 
flows is substantiated also by numerous experiments. A more complete discussion 
of this phenomenon can be found in the Buyevich’s paper (1966). 

We assume further that the distribution function f (w; t ,  r) is governed by the 
Kolmogoroff-Chapman equation, i.e. 

f (w; t ,  1-1 = WAr, Aw, Atlro, wo, t,)f (wo; to, ro) dwodro, (2.3) ss 
Ar = r-ro, Aw = w-wo, At = t-to, 
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where W(Ar, Aw, At Ir,, w,, to) is the probability of transition for a particle passing 
from the volume element (r,, r, + dr,; w,, wo + dw,) of the phase space where i t  
was at the moment to to  the volume element (r, r + dr; w, w + dw) during the 
time interval At. As is well known, the Kolmogoroff-Chapman equation is valid 
for any statistical system provided (i) the continuous functions f and W exist, 
f tending to zero fast enough as IwI tends to  infinity, (ii) the random phase 
approximation be used. 

The latter approximation means that the smallest time interval which it is 
permissible t o  consider in the corresponding statistical theory must exceed 
sufficiently the characteristic time r of the inner interaction in the system 
(Prigogine 1962). I n  other words, the inequality At % r being accepted, equation 
(2-3) is valid asymptotica.lly in any case and states in fact independence of the 
future from the past. To make the treatment more intelligible, let us give some 
examples. In  kinetic theory of rarefied or dense gases the ‘inner time scale’ r has 
the same order of magnitude as the mean time interval between subsequent 
collisions of the test molecule with all the other molecules and is usually much 
smaller than the ‘outer time scale’ T characterizing microprocesses of momentum 
or energy exchange between adjacent macroscopic volumes of the gas. It is clear 
that only time intervals t 2 T are of interest in the continuum theory of this gas. 
From the statistical point of view, utilization of the random phase approximation 
leads to  the substitution of the master equation or, in particular, the Boltzmann 
equation for the Liouville equation. Similarly, in the theory of Brownian move- 
ment the time r coincides with the mean time elapsing between subsequent 
molecular kicks experienced by a suspended particle. It is also much smaller than 
the outer time scale T representing in this case the typical time interval during 
which the velocity of the particle varies essentially. I n  a way, the times r and T 
are analogous t o  the inner and outer space scales in the theory of turbulence. 

Any particle in the system under examination is affected in a random way by 
displacement of all the neighbouring particles as well as by other perturbations 
of the velocity and pressure fields of the fluid. I n  general, the action of these 
perturbations on a particle in a mixture plays the same role as the action of mole- 
cular kicks on a Brownian particle. One can easily imagine the time interval 
between subsequent ‘ perturbation kicks ’ being very small compared with the 
time T of considerable change in the particle velocity or position so that  the 
hypothesis T > r seems to  be well satisfied. To a certain extent it is borne out also 
by the experimental evidence on fluidization (see, e.g. the discussion in Buyevich’s 
paper (1966)). 

Equation (2.3) being accepted, one gets from it in aregular manner the equation 

+ 2 ( 2 * 2 )  ar aw :{Aw*Ar}f+(A*a)  aw aw :{Aw*Aw)f 1 = 0. (2.4) 

Here the braces { } denote averaging over the transition probability, e.g. 

(Ar) = W(Ar, Aw, Atlr, w, to)  drodwo 
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and we have used the notation 

a * b = \laibjll, A:B = A,B,,, 

where a, b and A, B are arbitrary vectors and tensors. 
The expressions for the quantities within the braces in (2.4) can be found from 

consideration of physical properties of the system under study. First of all, it  is 
obvious that 

where H* is the ratio of the force acting upon the test particle to its mass, m. It is 
relevant to emphasize that the quantity H* represents in fact the true force 
acting on the unit mass of the particle averaged over the time interval T B 7, the 
component of the latter force with frequency of the order of 7-1 being dropped 
after such an averaging. This component being set aside altogether, we draw the 
conclusion that all the other quantities with the braces in (2.4) are proportional 
to (At)2 and the corresponding terms in (2.4) vanish a t  At -+ 0. This component 
being taken into account, we can demonstrate, in the same way as in the theory 
of Brownian movement, that the quantity { A w  * A w }  has the order of At, i.e. 

{Ar} = w A t  + O((At)2), {Aw} = H*At + O((At)2), (2.5) 

{Aw * Aw} = 2 A A t  +O((At)2), (2.6) 

where A is some unknown tensor describing the diffusion in the velocity space. 
Such a tensor was introduced in the theory of disperse systems earlier by 
Houghton (1966) and Levich & Myasnikov (1966). 

Taking formally At -+ 0 and making use of (2.5) and (2.6), we obtain froin (2.4) 
the Fokker-Planck equation for suspended particles 

- + w - + - ( H * f ) + ( ~ * ~ ) :  a !  a !  a (Af) = 0. 
at ar aw aw aw 

We represent further the force H *  in (2.7) as the sum of the mean force (H) and 
the random resistance force - cw' depending upon the single pseudo-turbulent 
variable w' defined in accordance with (2.2) 

(2.8) 

Explicit expressions for the vector (H) and the tensor c,  corresponding to one 
possible approximate expression for the total force acting upon a particle, are 
given in the appendix. The influence of the random component of the total 
force, which depends on all the other pseudo-turbulent variables, on the particle 
velocity distribution is believed to be defined by the last term in (2.7), as happens, 
for example, in the theory of Brownian movement. 

This assumption, although compatible with the preceding analysis and with 
the utilization of the random phase approximation, is of rather heuristic character 
and should be refined later in the further development of the theory. It would be 
attractive to introduce the aforementioned component into the expression (2.8) 
and, thus, into (2.7) immediately. But this is hampered with the fact that in this 
case the kinetic equations for conventional distributions governing the pseudo- 
turbulent pulsations p', p' ,  v' have also to be formulated. It does not seem to be 
possible because of an unknown dependence of these distributions upon multi- 

H" = (H) - CW'. 



Statistical hydromechanics of disperse systems. Part 1 495 

particle distribution functions. Really, the velocity and the pressure of the fluid 
are affected by the behaviour of many particles so that the conventional distribu- 
tions ought to include some functionals depending not only upon the function 
f (w; t ,  r) but also upon the above functions for two, three, etc. particles. 

Taking account of (2.8) and introducing the new variable W' instead of w into 
(2.7), we obtain the kinetic equation in the final form (cf. the derivation of the 
kinetic equation for a gas) 

where (2.9) 

The derivation of (2.9) is quite straightforward when one transforms the deriva- 
tives involved in (2.7) by means of the obvious relations 

a a a(w) a a a a(w) a a a 
at at at awl' ar, ari ar, awl' aw awl' 
- =  _-___- - =  ---- -=-  

While formulating (2.9) we have in fact assumed the transition probability W 
to be a continuous function. One might expect that actually this function has 
discontinuities representing instantaneous jumps of the velocity of the test 
particle caused by its direct collisions with the neighbouring particles. In  
principle, the additional term describing the influence of those collisions and 
having the same meaning as, e.g. the collision term in the Boltzmann equation, 
can be easily introduced into (2.7) and (2.9). The kinetic equation for a disperse 
system containing such a term in the classical Boltzmann form has been investi- 
gated by Levich & Myasnikov (1966) and Myasnikov (1967). In  this paper for the 
sake of simplicity we leave direct interparticle collisions out of account altogether 
because of very small probability of their occurrence in the system. Indeed, the 
approach of particles causes a sharp increase in the pressure in the liquid layer 
between the particles which prevents them from direct collision (see, e.g. Brenner's 
paper (1  961); this phenomenon is well known also in the hydrodynamic theory of 
lubrication). Thus, we assume that particles interact mostly through the random 
fields of the fluid velocity and pressure so that their occasional contacts do not 
play an important role in momentum and energy exchange between particles. 
As the detailed analysis shows, this suggestion proves to be valid for a very broad 
class of disperse systems encountered in practice provided their concentration is 
not too close to that of the state of close packing. 

An essential feature of the analysis proposed here is the assumption that 
pseudo-turbulent motion of both phases is chaotic so that the interparticle 
interaction has a random character. This is the case for many systems, especially 
for those with high concentration (e.g. for fluidized beds). Another type of inter- 
action resulting in cluster formation can be dominant in dilute suspensions of 
small particles. This interaction is caused by regular (not random) motion of 
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particles, and accordingly, the assumption of randomness does not hold. The effect 
of cluster formation is not accounted for because allowance for it is connected with 
a number of additional complications and is unnecessary at this stage of the 
treatment. 

We proceed now to the discussion of another important feature of the random 
phase approximation used. The time scale determines also the relaxation time 
characterizing the establishment of local equilibrium in a statistical system 
(Prigogine 1962). Therefore, all states of the disperse system considered here 
under the assumption t $ T must be regarded as local equilibrium ones. This gives 
an opportunity to describe the situation near some ‘point’ of the system by 
means of the corresponding values of the dynamic variables a t  this point and to 
consider the quantities defining various local properties of the system as cert,ain 
functioiis of these variables. I n  particular, the distribution function f can be 
looked upon as an implicit function of t ,  r through the dynamic variables. To 
ma,ke this more clear, we allude to the analogy with kinetic theory of gases in 
which case the concept of local equilibrium reduces to  that of molecular chaos and 
the same reasoning can be applied in a familiar way. 

The quantities (wiw;) can be obtained in principle after solut,ion of the kinetic 
equation (2.9) and can also be held as certain functions of the dynamic variables. 
We shall be interested further in other quantities of the type of ($’$’), ($’$;), 
($; 9;) where $-‘, $-‘and +-’, Gr are arbitrary pseudo-turbulent scalars and vectors. 
It is reasonable to  put forward the following relat,ionships: 

(#V-’) = R[4S, $1 0, <$-’$;> = Ri[$, Gleij, 1 
(2. 

($;#;) = R&, $1 e,, e = t r  8 = eii, eij = ( w ; w ; ) ~  

the auantities R, Ri, Rik being regarded as some functions of the dynamic 
variables, repeated subscripts indicating summation. These quantities as well as 
the tensor A are a t  this stage unknown. However, they all describe some local 
properties of the system and, as follows from the above considerations, must be 
the same functions of the dynamic variables in an arbitrary state of local 
equilibrium. This enables us to  estimate them correctly by considering only the 
state of total equilibrium when all the dynamic variables do not depend upon t 
and r (apart from the mean pressure ( p )  which can depend on r linearly). 

The relations (2.10) are valid, of course, when fluctuations in the fluid velocity 
and pressure are induced only by pseudo-turbulent pulsations of the particles. 
Pseudo-turbulence under study has certainly nothing in common with conven- 
tional turbulence in one-phase media, the latter being taken to  be absent. That it 
is often relevant in practice, can be seen, for example, from Bagnold’s paper 
(1956). I n  a sense pseudo-turbulence is similas to  motion of a fluid filtrating 
through a porous body with random porosity investigated by Buyevich, Leonov & 
Safrai (1969). However, in the latter ease the statistical characteristics of porosity 
are steady and given a priori whereas in disperse systems it is pseudo-turbulence 
itself that mainly determines them. Pseudo-turbulence is an intrinsic property of 
a disperse system, but by no means the result of hydrodynamic instability of the 
mean flow. If the latter occurs, additional large-scale perturbations similar to  
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secondary flows or turbulence in hydrodynamics of one-phase media may be 
important, but are not considered below. 

We conclude this section by summarizing three major assumptions under 
which (2.9) and (2.10) are valid. First, the Kolmogoroff-Chapman equaton (2.3) 
with a continuous function W is supposed to be true when the smallest value of 
At considered in the theory is well above the inner time scale r. This implies also 
two important consequences : (i) direct interparticle collisions are absent or play 
only a minor role, and (ii) any state of the disperse system under study exhibits 
the property of being a local equilibrium state. Second, the force H* in (2.9) is 
represented in the form (2.8), the influence of the random pulsations p’, p’ ,  v‘ upon 
the distribution function f being accounted for by the term in (2.9) which involves 
the diffusion in the velocity space. And finally, conventional turbulence of the 
fluid is absent or, at any rate, does not play an important role as compared with 
pseudo-turbulence. 

3. Dynamic equations for the dispersed and the liquid phases 
We turn now to  the derivation of equations governing the mass and momentum 

conservation in the mean flow of both phases of the system regarded as co-existing 
interacting continua. These equations for the dispersed phase can be readily 
obtained from (2.9) in a standard manner (Chapman & Cowling 1952). Multi- 
plying the latter equation by mf and by mw’f and integrating it over 

w’(-Co < Iw’[ < co) 

we get 

Here we have made use of the equality (see the appendix) 

where F($) is the interaction force between two phases related t o  the unit volume 
of the mixture and g is the acceleration caused by external body force. 

The tensor P@) defines the pseudo-turbulent stresses arising in the dispersed 

(3-2) 
phase : 

The physical origin of these stresses is just the same as that of pressure and of 
viscous stresses in a molecular gas. The symmetrical tensor P(p) describes in fact 
the momentum transfer caused by pseudo-turbulent motion of the particles. 
It is worth noting also that these stresses are similar in a sense to the usual 
Reynolds stresses appearing in turbulent flow of one-phase fluid. The equations 
(3.1) describe conservation of mass and momentum of the dispersed phase looked 
upon as a continuum. It is important that they are independent of the  unknown 
tensor A in (2.9). 

It is possible to derive in the same way an equation governing the transfer of 

P@) = d1(p)(wt * w’) = dl (p)e .  

32 F L M  49 
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the quantity 8 in the mean flow for which purpose one has to multiply (2.9) by 
m9f and to integrate it over wf once more. Then one obtains the equation 

X = (wf *wf *w')f(t,r,wf)dwf, S{B} = llBis+BfLll, 

where X{B} denotes the symmetrization of an arbitrary tensor B. The convective 
terms in (3.3) can be simplified by using the first equation (3.1). It follows from 
(3.1) and (3.3) that 

s 

This equation determines the psendo-turbulent energy of the particles, the 
flux Q@) describing the part of this energy transfer due 60 pseudo-turbulent 
motion itself. One can easily see the analogy between various terms involved in 
(3.4) and those in the heat conduction equation. The additional terms appearing in 
the former equation as compared with the latter are inherent, of course, to a 
two-phase flow. 

To derive similar equations for the fluid phase, one has to postulate equations 
governing the interstitial flow of the fluid filtrating through the lattice of particles 
arranged in disorder. These equations we present in the form (Buyevich, Leonov & 
Safrar 1969) 

where,@) is the effective shear viscosity associated with the fluid flowing through 
the lattice. It should not be overlooked that, in accordance with the preceding 
statistical analysis, the number concentration of particles must be taken equal 
to its mean value n(t, r), so that the force acting upon the fluid in unit volume of 
the two-phase mixture can be determined as 

do( 1 - croon) g - nG({) = do( 1 - (p))  g - F({), 

where G(0 is the interaction force per particle (see the appendix). Note that 
a fresh interpretation of (3.5) for a steady flow of the fluid through a cloud of 
particles has been recently given by Tam (1969). Equations of the same type 
were used for the description of the interstitial flow by Anderson & Jackson 
(1967). As a matter of fact, equations (3.5) represent the modified Navier-Stokes 
equations in which allowance is made for the volume fraction occupied by 
particles. 
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The equation for the conservation of mass of the fluid phase can be obtained by 
averaging the first equation (3.5). We get 

q = - (p’v’). 
Pseudo-turbulent motion leads to occurrence of the additional mean flow of 

the fluid, q, as happens, for instance, in the theory of turbulence of one-phase 
media. The origin of this flow is similar to that in a porous body with random 
porosity in which a fluid moves. 

Similarly, one obtains from the second equation (3.5) the following equation of 
the momentum conservation in the mean flow of the liquid phase: 

I P(p) = do(q * (v) + (v) * q), P(f) = do( 1 - ( p ) )  (v’ * v’), 

Note that these equations are accurate to terms of the second order in the 
pseudo-turbulent variables. In  analysis of the terms of higher order the same 
difficulty arises as in the problem of closure of the system of equations for the 
correlation functions in the theory of turbulence. 

Equation (3.7) involves additional terms caused not only by the pseudo- 
turbulent pulsations of the fluid velocity but also by the volume flow q and by 
fluctuations in the concentration. It is helpful in some cases to transform (3.6) 
and (3.7) by introducing the mean value (Q), and the pseudo-turbulent fluctua- 
tion Q’, of the total flow of the fluid by means of the relations 

We have then from (3.6) and (3.7) 
Q = (l-(p))(v)+q, Q‘ = (~ - (~ ) )v ‘ -P’ (v ) .  (3.8) 

a(p)/at - aQ/ar = 0, 

Equations (3.6) and (3.7) or (3.9) coupled with (3.1) govern the mean flow of the 
disperse system under study. They differ substantially from those usually postu- 
lated (as a rule, phenomenologically) owing to occurrence of the pseudo-turbulent 
stresses, the flow q and the other pseudo-turbulent quantities in them. They have 
to  be solved together with the kinetic equation (2.9) in order to express the 
functionf(t, r, w’) in terms of the dynamic variables and of physical properties of 
both phases, to calculate further the tensor 

6 = (w‘ x w‘) = - (w’ * w’)f(t, r, w’) dw‘, (3.10) 

and to find all the other pseudo-turbulent quantities involved in the dynamic 
equations for the mean flow in accordance with (2.10). 

n ‘S  
32-2 
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As a result, we thus have the set of nine scalar equations (2.9), (3.1), (3.6) and 
(3.7) for the determination of the nine unknown functions f, (p) ,  (p ) ,  (vi) and 
(wi) ( i  = 1 , 2 , 3 ) .  The problem of solution of the kinetic equation for suspended 
particles is analogous in a sense to that encountered in the kinetic theory of 
gases (Chapman & Cowling 1952) and may be treated with the help of the 
Chapman-Enskog method in the modified form suggested by Buyevich (19700,). 
This offers an opportunity to  formulate the system of successive approxima- 
tions in hydromechanics of disperse systems corresponding to  the well known 
Eulerian, Navier-Stokes and Burnett approximations in hydromechanics of 
gases. 

There exists one essential difference between the above problem and that in 
kinetic theory of gases, namely, equations (2.9) and (2.10) include the unknown 
quantities A and R, Ri, Rij which must also be represented as some functions of 
the dynamic variables. To solve the last problem some independent method of 
treatment of pseudo-turbulence is evidently needed. We develop such a method 
in $4 making use of certain properties of local equilibrium states discussed 
in $2 .  

4. The structure of pseudo-turbulence in an equilibrium state 
The quantities A, R, Ri and Rij represent some local properties of the disperse 

systems and hence, as was pointed out in 9 2 ,  must be expressed in terms of the 
dynamic Variables in any state of local equilibrium in the same manner as in a 
true equilibrium state in which all these variables do not depend upon t and r 
at all, except for the mean pressure ( p )  which can depend linearly upon r. There- 
fore, to  determine these quantities as functions of the dynamic variables, it is 
quite sufficient to consider pseudo-turbulent motion in the state of complete 
equilibrium. I n  doing so, we get simultaneously explicit expressions for various 
pseudo-turbulent quantities involved in (2.10) which are valid in this state of the 
disperse system. To indicate that those expressions are related to  the equilibrium 
state, we denote them henceforth by a superscript zero. 

First of all, we have to write stochastic equations for all the pseudo-turbulent 
variables. The Langevin equation for one particle has the form 

m d w l d t  = mg + Go or d,(p) dwld t  = d,(p) g + FO, (4.1) 

where the derivation is carried out along the trajectory of the particle. The 
expressions for Go and Fo are obtained from those for G(Q and Fm by dropping all 
the derivatives of the dynamic variables with respect to  t and r (save for the 
constant pressure gradient V(p,>, of course). Subtracting the corresponding 
averaged equation from (4.1), one obtains the stochastic equation governing the 
random motion of particles 

d,(p)dw‘/dt = F”, ( 4 4  

the force FO’ being dependent upon various dynamic and pseudo-turbulent 
variables. 

Similarly, subtracting the dynamic equations (3.6) and (3.7) from the Navier- 
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Stokes equations (3.5) and neglecting the terms containing products of various 
pseudo-turbulent variables, we obtain the stochastic equations governing the 
random motion of the fluid 

(4.3) 

u = v-w,  (u) = (v)-{w), u' = v'-w'. 

The time derivatives here are also taken along the particle path. 
Neglect of the pseudo-turbulent terms of the second order of magnitude is 

inherently reasonable, since, all pseudo-turbulent variables are small as compared 
with the corresponding dynamicvariables. However, some support for thisneglect 
can be given even in the case when the former variables are comparatively large. 
The terms omitted from (4.3) can be written in a general form y(q5'yY - {$'$')O),  

where y depends in some way upon the dynamic variables and q5', 9' are arbitrary 
pseudo-turbulent variables. One might assume the representative time interval, 
during which such quantities are changing considerably, to be roughly equal to 
the time scale r so that these quantities could be looked upon as random functions 
of time with independent increments and, the asymptotics t 2 T 9 I- being 
accepted, ought to vanish on averaging over the time interval of the order of T. 

This idea is not a new one. The possibility of its use in hydrodynamics has been 
known for some time. Landau & Lifshitz (1957) have proposed the addition of 
artificial terms of the same kind into equations of hydromechanics of one-phase 
media, and Edwards (1964) and Novikov (1963) have applied this idea to the 
theory of turbulence. 

Note that it is important to drop the above terms in our analysis in order to 
utilize for further investigation the efficient technique of the correlation theory 
of stationary random processes. Therefore, we are compelled to make now the 
corresponding assumption without further comment. One can believe in truth 
that the final results obtained will still be right in a qualitative, if not in a 
quantitative, way even in the case when the pseudo-turbulent variables are 
large. In  accordance with this assumption, we have to retain those terms in the 
expression for the force PO' which depend upon the pseudo-turbulent variables 
linearly (see the appendix). 

We introduce further the representations of random functions through 
stochastic Fourier-Stieltjes integrals, viz. 

where integration is carried out over all frequencies w and over the entire wave- 
number space k. Substituting (4.4) into (4.2) and (4.3), we obtain the set of linear 
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algebraic equations for the spectral measures dZ,, dZ,, dZ, and dZ,. These 
equations have the form 

(4.5) 

Here d Z ,  is the spectral measure of the interaction force FO'. Using the expression 
for FCi) derived in the appendix, we get 

1 id,(p) W dZ,  = dZ,, 

(0 + (u) k )  d Z ,  - (1 - ( p } )  k d Z ,  = 0, 

id,( 1 - ( p ) )  (W + (u) k )  dZ,  = - ikdZ, -poS[k2dZ,  + + k ( k d Z , ) ]  - dZ,. 

d Z ,  = do@) ( A K l  +PzKa(u) + i W Y )  dZt' + PzK2(uodZ,) {u)  

az, = az,-az,, U, = (u)/(u). (4.6) 

The meaning of the symbols used is given in appendix. 
One can readily obtain from (4.5) and (4.6) the relations between dZ,, and all 

the other spectral measures. Hence the coeEcients N,, N,, N, in the relations 

d z p  = N,(W, k, (4)) dZ,, dZ,  = Nu(@, k, (4)) d z , ,  d Z ,  = Nw(a, k,  (#))dZ, (4.7) 

can be regarded as some known functions of o, k and ($), the latter symbol 
representing all the dynamic variables. 

In  accordance with (4.7), all the spectral measures are expressed in terms of dZ,. 
This is not simply a matter of convenience, since the latter spectral measure can be 
singled out on the basis of physical considerations. Really, it is the concentration 
fluctuations which originate pseudo-turbulence of both phases. Besides (and it is 
especially important), the spectral theory of these fluctuations can be constructed 
in an independent way and its results can be used here (Buyevich 1970b). 

Equations (4.7) enable us to derive expressions for pseudo-turbulent spectral 
densities of interest. Indeed, we have the equation for the spectral density of 
arbitrary scalar pseudo-turbulent variables #' and @': 

= N;(o, k, (9)) Ny(oJ, k,  (#)) q , p  ((4 k, (#)I, (4.8) 

so that all the spectral densities can be expressed in terms of this for the random 
process p'(t ,  r). The explicit representations for the latter density has been given 
by Buyevich (1970b). The utilization of this representation leads to the final 
determination of the spectral densities characterizing equilibrium pseudo- 
turbulence. Various correlation functions can be calculated in a standard way, viz. 

C$,& r', (9)) = (#'(t ,  r) $'(t + t ' ,  r + r')) 

= [J&t,+kr,)lyO $,*(% k ,  (9)) dwdk .  (4.9) 

The averaged quantities of the type of (#'$')O are obtained from (4.9) at 
t' = 0 and r' = 0. Having these quantities at  our disposal, it is not difficult to 
obtain representations for all the quantities R solving for this purpose the 
algebraic equations (2.10) in the equilibrium state. 
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It is worth noting that this technique allows one to find also some other im- 
portant characteristics of equilibrium pseudo-turbulence. For example, the tensor 
of the pseudo-turbulent diffusivities for the suspended particles can be found in a 
straight-forward way as 

where Vw,w is the spectral tensor of the random vector process w'( t , r ) .  This 
definition of DO is permissible in view of the fact that the treatment of pseudo- 
turbulence is performed actually in the co-ordinate system connected with some 
moving particle. 

Now we turn to the determination of the tensor A of the diffusion in velocity 
space occurring in (2.9). If one writes this equation for the equilibrium state, it 
would not contain any time or space derivatives. Therefore, this equation can be 
solved easily, its solution depending not only upon the dynamic variables and 
w' but also upon the components of the tensor A. By definition, this tensor is 
symmetrical. That is why it has only six independent components which can be 
readily obtained from the solution of the equations 

Ofi = - w;w; p ( t ,  r, w') dw', O&. = (w;w;)~, (4.11) 

whose left-hand sides are already known and right-hand sides depend upon the 
components of A. Thus, the problem of the expression of the pseudo-turbulent 
quantities through the dynamic variables is solved in principle. 

We have been concerned above only with the key aspects of the statistical 
theory of disperse systems and have left the explicit calculation of various 
characteristics of pseudo-turbulence, the solution of the kinetic equation, etc., 
out of account completely. We do believe, however, that this should not prevent 
the reader from gaining a proper understanding of the theory proposed; further 
details including calculation and the comparison with experiments will be 
presented in the subsequent parts of this paper. 

n 's 

Appendix 
In this appendix we turn to the examination of an approximate expression for 

the total force acting on one particle in a concentrated disperse system. To derive 
that expression, we start from the known Basset form for the force G acting upon 
an isolated particle at small Reynolds number, Re, 

G = mg + GCi), GCi) = GI + G, + G, + G4, 1 (A1) 
G, = --cOap/ar, G, = cOdOPu, G, = $cOdodu/dt, u = V- W ,  

t du at' 9% 9 Yo t p = -  
G4 = flodoys-m 2i It=t. W) 2a2' Y=a(n) 

There is general agreement on the meaning of various terms in (A 1). Note only 
that v and p denote the fluid velocity and pressure gradient unperturbed by a 
single particle, and the length scale of their variation exceeds sufficiently the 
particle radius a. 
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Our problem is to  generalize (A 1) to situations in which the Reynolds number 
is not necessarily small and there are many particles in a fluid. To this end, we 
utilize, as usual, the point force approximation and some experimental results. 
This approximation being accepted, we have the former expression for the force 
G, resulting from the pressure field unperturbed by the given particle, i.e. 

GI = p(r’ - r) dS z - go ap/ar, (A 2) $ 
where integration is carried out over the particle surface. For the steady drag 
force experienced by the particle we can use one of numerous empirical expressions 
obtained from experiments with a fluid flowing through a cloud or lattice of 
motionless particles. It is quite permissible to  write such an expression in the 
following general form: 

I n  some particular cases expressions of the type of (A 3) have a good theoretical 
foundation (see, e.g. Tam’s paper (1969)). Only the first term in (A 3) is significant 
at Re < 1, in $he opposite case (Re B 1) only the second term is important. The 
functions K,(p) and K,(p) describe the influence of neighbouring particles on the 
local fluid flow in the vicinity of the given particle and on the drag force experi- 
enced by it. They must meet the conditions 

K,(O) = K2(0) = 1, dK,/dp = dK,/dp > 0. 

The explicit representations for the coeEcients p,, p2 and for the functions K,(p) ,  
K , (p)  are inessential for the main purposes of this paper and are not listed here. 

The force G, caused by the instantaneous acceleration of the apparent mass of 
the adjacent fluid may be represented, by analogy with (A l) ,  in one of the two 
following forms : 

G3 = ~ o d o r ( p )  W d t  or G3 = godod(r(p 1 u)/& (A 4) 

where the unknown function ~ ( p )  replaces the coefficient 4 in (A 1). Unfortunately, 
as far as the author knows there are no empirical or theoretical representations for 
this function. To estimate it approximately, we consider the motion of an ideal 
fluid through the cloud of particles making use of the well known cell model. 
Thus, we assume that the velocity of the relative motion of some particle is equal 
to  - u, and, using the spherical co-ordinate system, write the boundary condi- 
tions for the flow potential q4 in the form 

where b is the cell radius. The solution of the Laplace equation for # under those 
boundary conditions is 

The kinetic energy of the fluid inside the cell can be represented in the form 
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The fluid velocity equals u, + Vq5 in the co-ordinate system connected with the 
moving particle. Hence the corresponding mean velocity, obtained by averaging 
over the cell volume occupied with the liquid, is 

uy = uz = 0. 

This formula enables us t o  express the quantity E in terms of the velocity u and 
to  obtain in a regular manner the total momentum of the perturbed flow of the 
fluid. As a result, we get for the force G, the second expression (A 4) in which 

As the quantity p increases from zero, the function q(p) decreases first from Q, 
achieves the minimum and then increases (q(1)  = p). Thus, q(p) is of the order of 
magnitude of unity for all the values of p of interest. 

The natural phenomenological generalization of the formula for G, can be 
represented in the form 

or in the form which differs from that in (A 6) by the introduction of the unknown 
function { (p)  under the symbol of differentiation (cf. (A 4)). Here to is the charac- 
teristic time interval during which changes in the local fluid velocity within the 
cell continue to  affect the force acting upon the particle. This quantity can be 
estimated as the time of propagation of perturbations induced by the particle 
from its surface to  that of the cell. This is quite compatible with the major idea of 
the cell model used according to  which perturbations outside any cell do not 
affect processes occurring inside it. Therefore, such an estimation of to seems to  be 
quite natural. The propagation velocity of perturbations has the order of magni- 
tude of (vow)* where o is the frequency of particle oscillations. I n  the case under 
study we mean by w the characteristic frequency determining changes in the 
velocity u, so that 

(A 7) 
b-a  1-pf a U 

w w -  to N - = - - 
(vow)$ p* (vow)8’ a’ 

This quantity tends to  infinity as p --f 0 in accordance with (A 1). If the 
coefficient in (A 7),  depending upon p, is not too small (it is always so because p is 
less than 0.6 or 0-7), we have from this equation a t  Re 4 1 

w < voa-2 and to < T, N w-l. 

Therefore, it follows from (A 1) and (A 6) a t  [ (p)  N 1, 

G ,  - rodoywut$ N ~ o d o ( v o / a ) ~ w h  < ~ o d o ( v o / a 2 ) ~  N G,, 

so that we can neglect the force G, as compared with G,. 
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case. Substituting there u cos wt for u, we obtain 
In the opposite case (Re 9 1) we can take to N“ co in (A 6) since to 9 T, in this 

G,  - godoydu - g o d o ( v o w / a 2 ) ~ u  < godowu - G,, 

so we can neglect G, as compared with G3. 
This offers an opportunity to obtain an approximate expression for the inter- 

action force GCi) valid in a general case by dropping G, altogether. This is of 
primary importance since otherwise (2-3) could not be formulated, because that 
force depends upon the history of particle motion. 

Thus, we have finally instead of (A 1)  

where y(p )  can be approximately estimated with the help of (A 5). 
Dividing (A 8) by the particle mass m, we get a formula for the force H per unit 

mass of the particle. Hence we obtain with an accuracy to the second-order terms 
the following expression for (H): 

(H) 2 g +X(PI[h‘,(U) + K,*(p’u’) + wT*(p’2) (u>l +PzCKz((u)(u) + ((uou’) u’> 

+ 9~o(u’2) - ~ ~ , ( ( ~ o ~ ’ ) 2 )  + KWu)(p’u‘) + (P’(U0U’)) (u)) + + G * ( P ’ z )  (u>(u)l 

x = dO/dI, uo = (u)/(u>, V ( ( P ) )  = 1 1 9  K,  = K j ( ( P ) )  ( j  = 132) (A91 

(an asterisk above denotes differentiation with respect to (p)). 
All the pseudo-turbulent quantities involved in (A 9) can be easily expressed in 

terms of the dynamic variables by means of relations in Q 4. The corresponding 
expression for the random force H’ = H - (H) has the form 

1 apt 
yu‘+T*p‘(u) + w‘- y(u) --- ) ( L) ] d, ar a ( ~ l o )  

Hence the representation for the tensor c involved in the kinetic equation can 
be derived as 

a 
c = IIcijlIt cij M x(Plh‘,+pzKz(u))S~j+xPzK,(u)6i16jl-~- arj (q<%t))* ( A l l )  

The expression for the force F(0 related to the unit volume of a mixture can be 
readily obtained from (A 9)-(A 11). We have simply the equalities 

(A 12) Wi) = %G(i) d,(p)  HCi) 

and the corresponding relationships for (Hi)) and FCi)’. 
Let us emphasize once more that the expression obtained for the interaction 

force is essentially approximate. One might, of course, argue the validity of this 
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expression or its accuracy in some cases as well as the mere applicability of the 
point force approximation for concentrated systems. The derivation of a rigorous 
expression being connected with the solution of a very complex many-body 
problem, we think that the best conceivable criterion for adequacy of the approxi- 
mate expression should consist in its agreement with experiments. So far 
numerical results for various pseudo-turbulent quantities obtained by the author 
on the basis of the theory proposed here do not contradict the experimental 
evidence. Irrespective of this, we have to note that the theory itself is not in the 
least influenced by the form of the aforementioned expression. In  particular, all 
calculations are essentially the same when any other possible expression for the 
interaction force is used. Therefore, the major aims of this paper formulated in 
5 1 are by no means affected when the particular equations (A 9)-(A 12) are 
utilized and there is no reason to make things more complicated at  this stage. 
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